FREE PRODUCT FORMULAE FOR QUANTUM PERMUTATION GROUPS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Product Formulae for Quantum Permutation Groups

Associated to a finite graph X is its quantum automorphism group G(X). We prove a formula of type G(X ∗ Y ) = G(X) ∗w G(Y ), where ∗w is a free wreath product. Then we discuss representation theory of free wreath products, with the conjectural formula μ(G ∗w H) = μ(G) ⊠ μ(H), where μ is the associated spectral measure. This is verified in two situations: one using free probability techniques, t...

متن کامل

Algebraic Quantum Permutation Groups

We discuss some algebraic aspects of quantum permutation groups, working over arbitrary fields. If K is any characteristic zero field, we show that there exists a universal cosemisimple Hopf algebra coacting on the diagonal algebra K: this is a refinement of Wang’s universality theorem for the (compact) quantum permutation group. We also prove a structural result for Hopf algebras having a non-...

متن کامل

Free Wreath Product by the Quantum Permutation Group

Let A be a compact quantum group, let n ∈ N∗ and let Aaut(Xn) be the quantum permutation group on n letters. A free wreath product construction A∗wAaut(Xn) is done. This construction provides new examples of quantum groups, and is useful to describe the quantum automorphism group of the n-times disjoint union of a finite connected graph.

متن کامل

Integration over Quantum Permutation Groups

A remarkable fact, discovered by Wang in [14], is that the set Xn = {1, . . . , n} has a quantum permutation group. For n = 1, 2, 3 this is the usual symmetric group Sn. However, starting from n = 4 the situation is different: for instance the dual of Z2 ∗ Z2 acts on X4. In other words, “quantum permutations” do exist. They form a compact quantum group Qn, satisfying the axioms of Woronowicz in...

متن کامل

Twisted sectors for tensor product VOAs associated to permutation groups

Let V be a vertex operator algebra. It is shown that the categories of weak, admissible and ordinary g-twisted modules for the tensor product VOA V ⊗k are isomorphic to the categories of weak, admissible and ordinary V -modules respectively where g is a k cycle automorphism of V ⊗k. For arbitrary permutation automorphism g of V ⊗k the category of admissible g-twisted modules for V ⊗k is semi si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Institute of Mathematics of Jussieu

سال: 2006

ISSN: 1474-7480,1475-3030

DOI: 10.1017/s1474748007000072